
2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 1/12

How to use SQS for disordered
materials
Aug 5, 2017

Table of Contents

Preface
Compile a mcsqs that saves all bestsqs
Generate SQS

Run corrdump
The rndstr.in file
The “-2, -3” parameters

Run mcsqs
Regular search
Search with a fixed cell with sqscell.out
Search for SQS with equi-length vectors

Convert SQS to POSCAR
FAQs

How to read the output files?
The bestsqs.out file
The bestcorr.out file
The mcsqs.log file

How to tell if a SQS is good?
How to accelerate the generation of SQS?

This article assumes the reader already has basic knowledge about Special
Quasi-random Structure (SQS).

Preface
I am a co-author of Chapter 10: Applications of Special Quasi-random Structures to High-
Entropy Alloys (M. C. Gao, C. Niu, C. Jiang, D. L. Irving) of the book High-Entropy Alloys
(Ed. M. C. Gao, J. W. Yeh, P. K. Liaw, Y. Zhang, Springer, 2016). This chapter of the book
focuses on the application of SQS in research with a wide variety of topics. Often, some
researchers who begin to use SQS email me, asking about more basic usage of SQS. So I
wrote this article, focusing on its basic usage with practical tips.

Changning Niu Home Blog Research

http://cniu.me/
http://cniu.me/
http://cniu.me/blog
http://cniu.me/research

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 2/12

Note: the best place to seek help on the usage of mcsqs is the official ATAT forum. Dr. Axel
van de Walle gave many excellent answers here.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.

Compile a mcsqs that saves all bestsqs
There is no need for me to introduce how to compile ATAT here; the manual has clear
instructions. However, I have a minor complaint about how the mcsqs code handles
intermediate SQS – it only saves the last one it finds as bestsqs.out . Even though this
makes sense in that the last one always has the best matched correlation functions, there
are other factors one needs to consider when selecting a SQS, e.g., the shape of the cell. It
is better if all SQS (whether perfect or imperfect) are stored with their correlation functions.
This also helps if the user uses a bestsqs for further calculations before the mcsqs finishes
searching, and now there is no risk that this bestsqs gets overwritten.

To have this modified version, find the following lines in atat/src/mcsqs.c++ before
compilation:

// Line 425 of mcsqs.c++

int tic=0;

Real obj=best.obj;

best.obj=MAXFLOAT;

while (1) {

 if (obj<best.obj) {

 // cerr << "Best" << endl;

 best=mc(cc);

 ofstream strfile;

 open_numbered_file(strfile, "bestsqs",ip,".out");

 strfile.setf(ios::fixed);

 strfile.precision(sigdig);

 write_structure(best.str,ulat,site_type_list,atom_label,axes,strfile);

 ofstream corrfile;

 open_numbered_file(corrfile, "bestcorr",ip,".out");

 corrfile.setf(ios::fixed);

 corrfile.precision(sigdig);

Replace the lines above with the following lines:

int tic=0;

Real obj=best.obj;

best.obj=MAXFLOAT;

int count_cniu=1; // added by cniu

http://www.brown.edu/Departments/Engineering/Labs/avdw/forum/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 3/12

while (1) {

 if (obj<best.obj) {

 // cerr << "Best" << endl;

 best=mc(cc);

 ofstream strfile;

 stringstream out_cniu; // added by cniu

 out_cniu << count_cniu++; // added by cniu

 std::string str1_cniu = "bestsqs-"; // added by cniu

 str1_cniu += out_cniu.str(); // added by cniu

 std::string str2_cniu = "bestcorr-"; // added by cniu

 str2_cniu += out_cniu.str(); // added by cniu

 char *cstr1_cniu = new char[str1_cniu.length()+1]; // added by cniu

 char *cstr2_cniu = new char[str2_cniu.length()+1]; // added by cniu

 strcpy(cstr1_cniu,str1_cniu.c_str()); // added by cniu

 strcpy(cstr2_cniu,str2_cniu.c_str()); // added by cniu

 open_numbered_file(strfile,cstr1_cniu,ip,".out"); // changed by cniu

 delete [] cstr1_cniu; // added by cniu

 strfile.setf(ios::fixed);

 strfile.precision(sigdig);

 write_structure(best.str,ulat,site_type_list,atom_label,axes,strfile);

 ofstream corrfile;

 open_numbered_file(corrfile,cstr2_cniu,ip,".out"); // changed by cniu

 delete [] cstr2_cniu; // added by cniu

 corrfile.setf(ios::fixed);

 corrfile.precision(sigdig);

Then compile ATAT as usual. Now the mcsqs code will save bestsqs-1.out , bestsqs-
2.out , etc. with corresponding bestcorr-1.out , bestcorr-2.out , etc.

Generate SQS
Two codes from the ATAT package are needed to generate SQS: corrdump and mcsqs .

Run corrdump
The corrdump code needs an input file called rndstr.in . So let’s first talk about this input
file.

The rndstr.in file

An example for FCC random solid solution:

1 1 1 90 90 90

.0 .5 .5

.5 .0 .5

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 4/12

.5 .5 .0

.0 .0 .0 Ni=.25,Fe=.25,Cr=.25,Co=.25

An example for L12 with partial ordering:

1 1 1 90 90 90

1 0 0

0 1 0

0 0 1

.0 .0 .0 Cr

.0 .5 .5 Ni=.333333,Fe=.333333,Co=.333334

.5 .0 .5 Ni=.333333,Fe=.333333,Co=.333334

.5 .5 .0 Ni=.333333,Fe=.333333,Co=.333334

An example for HCP random solid solution:

1 1 1.633 90 90 60

1 0 0

0 1 0

0 0 1

.000000 .000000 .0 Ni=.25,Fe=.25,Cr=.25,Co=.25

.666667 .666667 .5 Ni=.25,Fe=.25,Cr=.25,Co=.25

An example for D0-19 with partial ordering:

1 1 1.633 90 90 60

2 0 0

0 2 0

0 0 1

0.000000 0.000000 0.0 Cr

0.000000 1.000000 0.0 Ni=.333333,Fe=.333333,Co=.333334

1.000000 0.000000 0.0 Ni=.333333,Fe=.333333,Co=.333334

1.000000 1.000000 0.0 Ni=.333333,Fe=.333333,Co=.333334

0.666667 0.666667 0.5 Cr

1.666667 0.666667 0.5 Ni=.333333,Fe=.333333,Co=.333334

0.666667 1.666667 0.5 Ni=.333333,Fe=.333333,Co=.333334

1.666667 1.666667 0.5 Ni=.333333,Fe=.333333,Co=.333334

The rndstr.in input file can be divided into three parts: a unit cell (A), a periodic cell (B),
and sites (C). The first line defines a unit cell (A) in the Cartesian system by defining the
lengths of three vectors, a, b, c, and the angles, alpha, beta, gamma. This line can also be
substituted by three lines, which represents the unit cell with a 3x3 matrix, like in a POSCAR.
The purpose of the unit cell (A) is to provide a coordinate system in which the periodic cell
(B) and sites (C) can be expressed. The next three lines define the periodic cell, which is the
smallest supercell that represents the periodicity of the target materials. For example, a FCC

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 5/12

random solid solution needs a one-atom FCC primitive cell, a HCP random solid solution
needs a two-atom HCP primitive cell, and a L1-2 alloy needs a four-atom FCC cell. The
periodic cell is expressed with the unit cell, which means the Cartesian coordinates of the
periodic cell equal the multiplication of B and A. The third part is the lattice sites with atomic
concentrations. Like the periodic cell (B), the site coordinates in C are also express with the
unit cell (A), which means the Cartesian coordinates of the sites equal the multiplication of C
and A. The concentrations of each component are suggested not to exceed 6 significant
digits. The sum of concentrations on each site must always be 1.

Because the rndstr.in file is all about geometry, it is not necessary to consider the real
lattice parameters in real materials. All previous examples use 1 for lattice parameter. This
will make it easier to decide the -2, -3 parameters later.

The rndstr.in file does not have anything to do with the final shape of the SQS. All it does
is provide all the necessary symmetry input information. The size and shape of the final SQS
is controlled by the mcsqs command.

The “-2, -3” parameters

With the rndstr.in file ready, it is now time to run the first command:

corrdump -l=rndstr.in -ro -noe -nop -clus -2=1.1

The command corrdump reads the lattice file rndstr.in , and calculates symmetries and
clusters. This command usually finishes very quickly, unless a very large periodic cell is
defined, in which case the output file clusters.out can become really huge and the
command needs a few hours or more to finish. The most important parameter of this
command is “ -2 ”, which defines the longest distance, or cut-off, when calculating the
correlation functions. For example, in the case of FCC random solid solution, whose lattice
parameter is 1, the first nearest neighbor distance is 2^.5/2=0.71 , the second nearest
neighbor distance is 1.0 , and the third nearest neighbor distance is 1.5^.5=1.2 . So, the
cutoff should be any value between 1.0 and 1.2 if the first two shells of nearest neighbors
are to be considered for pair correlation functions. Similar to the “ -2 ” parameter, there are
“ -3 ” and above parameters for triplet correlation functions or more.

Many beginners are not sure how to determine the -2, -3 values, or how many shells of
nearest neighbors to include for the matching of correlation functions. There are no general
rules that work for all. Higher cutoff -2, -3 values lead to better disorder in the final
structure, but also requires much longer time for the mcsqs code to find a perfectly matched
SQS. The best strategy is to start with lower cutoff values (e.g., 2 shells for pairs and ignore
triplets) and increase them until a good SQS is reached. Find in the following sections about
how to tell if a SQS is good.

Run mcsqs

zg94508
高亮

zg94508
高亮

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 6/12

The second command mcsqs searches SQS using a Monte Carlo algorithm with defined
supercell size.

Regular search

The regular search for SQS is performed by:

mcsqs -n XX

The number of atoms in the SQS, XX , must be appropriately decided. A minimal
requirement is that this number must be a multiple of the number of sites in rndstr.in
while also allowing integer number of atoms for all elements. For example, a ternary
equiatomic L1-2 (4 sites in rndstr.in) SQS must contain at least 12 atoms.

The command mcsqs can run indefinitely, depending on the complexity of the material and
the cutoffs. Usually the cutoff should include two shells; including more is usually not
necessary, because if the correlation function mismatch of the second shell is not perfect, its
error will most likely dominate outsider shells. For a binary alloy, the generation of SQS takes
only a few seconds. For a quinary random alloy, it may never find a perfect SQS, and one
that’s “good enough” may need a few days or even a couple of weeks. Here “good enough”
is really up to the user’s determination. It can mean a maximum correlation mismatch of
0.1 or 0.01 .

If the revised version of mcsqs is used, a series of bestsqs-XX.out will be saved. The very
last one has the best correlation mismatch, but whether it is the best option for further study
is arguable. Usually a SQS which has very long lattice vectors and very small angles
between lattice vectors should be avoided, because it is not a comfortable model for DFT
calculations.

Search with a fixed cell with sqscell.out

It is possible to control the shape of SQS. One more file needs to be taken care with here:
sqscell.out . This file can be generated by the mcsqs command. A typical sqscell.out

looks like this:

2

 3 -2 4

 3 -4 2

-2 4 -3

 3 0 0

 0 3 0

-1 -2 2

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 7/12

The first line tells the total number of cell shapes, followed by an empty line. The next three
lines defines one cell shape of the SQS. This 3x3 matrix use Cartesian coordinates, NOT
expressed with the unit cell in rndstr.in .

If we know what exact cell to fix for the SQS, we can put its lattice vectors in sqscell.out ,
which can be used to restrict the SQS generation by adding a parameter to the mcsqs
command (which overwrites the -n xx parameter):

mcsqs -rc

For example, if we want to build a 2-2-2 fcc supercell with 32 atoms, we can define the
sqscell.out as:

1

2 0 0

0 2 0

0 0 2

Search for SQS with equi-length vectors

The most likely reason to control the shape of SQS is to make sure its shape is as close to a
cube as possible, which allows equal K-points for DFT and less symmetry-related issues.
This is different from the previous situation where the user knows what exact shape to use
for the SQS. Now the cell shape is undetermined. For example, we want to generate a 36-
atom quaternary equiatomic bcc SQS. It’s difficult to imagine the lattice vectors for a cells
that is as close to a cube as possible. For this purpose, use the following steps:

1. Run mcsqs -n 36 . Stop the mcsqs process as soon as it generates the sqscell.out
file.

2. Trim the sqscell.out file, and leave only cell shapes which have equal lattice vector
lengths. If many cells have equal lengths, only use those with the shortest lengths,
because it means they are the closest to a cubic shape.

3. Restart mcsqs -rc

I know, Step 2 seems a boring task, so I wrote a python code for this:

#! /usr/bin/env python

#

This script is written for Python 2.7.13.

#

It copies sqscell.out (generated by mcsqs) to old-sqscell.out.

Then trim the sqscell.out to three or less cells. All cells have

equal-length lattice vectors. If more than three cells like this

exist in the original sqscell.out, it keeps three cells with the

smallest vector lengths.

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 8/12

import numpy as np

Read the original file

with open('sqscell.out') as f1:

 lines = f1.readlines()

Save the original file

with open('old-sqscell.out', 'w') as f2:

 for x in lines: f2.write(x)

Replace it with a new file with 3 cells.

The 3 cells have the smallest and equal vector lengths

with open('sqscell.out', 'w') as f3:

 tot = int(lines[0].split()[0]) # total number of cells

 count = 0

 arr1 = np.zeros((tot, 2))

 for i in range(tot):

 arr1[i][0] = i

 a1, a2, a3 = [float(x) for x in lines[4*i+2].split()]

 b1, b2, b3 = [float(x) for x in lines[4*i+3].split()]

 c1, c2, c3 = [float(x) for x in lines[4*i+4].split()]

 l1 = (a1**2 + a2**2 + a3**2)**.5

 l2 = (b1**2 + b2**2 + b3**2)**.5

 l3 = (c1**2 + c2**2 + c3**2)**.5

 if l1 == l2 and l2 == l3:

 arr1[i][1] = l1

 count += 1

 arr1 = arr1[arr1[:,1].argsort()]

 if count >= 3:

 j = 0

 f3.write('3\n\n')

 for i in range(tot):

 if arr1[i][1] > 0 and j < 3:

 f3.write(lines[4*int(arr1[i][0])+2])

 f3.write(lines[4*int(arr1[i][0])+3])

 f3.write(lines[4*int(arr1[i][0])+4] + '\n')

 j += 1

 else:

 f3.write(str(count) + '\n\n')

 for i in range(tot):

 if arr1[i][1] > 0:

 f3.write(lines[4*int(arr1[i][0])+2])

 f3.write(lines[4*int(arr1[i][0])+3])

 f3.write(lines[4*int(arr1[i][0])+4] + '\n')

Put this code in the same directory for mcsqs , the run it python trim.py .

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 9/12

Convert SQS to POSCAR
The bestsqs.out files have similar formats as the rndstr.in file. The first three lines (A)
is the previously defined unit cell. The next three lines (B) is the lattice vectors of the SQS
expressed with the unit cell. All following (C) is the atomic coordinates expressed with the
unit cell.

To convert this SQS output to POSCAR, first calculate the lattice vectors in POSCAR as a
multiplication of B and A. Next calculate the atomic coordinates as a multiplication of C and
A. Remember that the atoms in the bestsqs.out are not grouped by elements! Order them
by element. Then use an experimental value of the lattice parameter for line 2 in the
POSCAR. Now a POSCAR using “Cartesian” format is obtained. Finally, it is recommended
to further convert the “Cartesian” POSCAR to a “Directional” POSCAR, because
visualization softwares like CrystalMaker or VESTA have better behavior with the latter, and
it is a very good habit to visualize the POSCAR before using it for expensive DFT
calculations.

Again, this looks like another boring task, so I have a tool written in C++ for it as well. It is
hosted on Github (here).

FAQs

How to read the output files?
Let’s focus on the output files from mcsqs , because this is the one that gives the SQS we
want with its properties. The mcsqs code generates five files (or more if you count
bestsqs-2.out , bestcorr-2.out , etc.): sqscell.out , rndstrgrp.out , bestsqs.out ,
bestcorr.out , and mcsqs.log . The sqscell.out file has been introduced previously.

The rndstrgrp.out file is just a recontruction of the rndstr.in file. Let’s focus on the last
three files.

The bestsqs.out file

This is the file where the SQS is stored. Its format is similar to that of the rndstr.in file, the
only difference being that every site in the bestsqs.out file is an exact atom instead of a
mixture of elements. It’s easy to convert the bestsqs.out file to a POSCAR , which involves
matrix multiplication and sorting on the elements. As discussed previously, there is a C++
code to do the job, which I put on Github.

The bestcorr.out file

2 0.866025 -0.027778 0.000000 -0.027778

2 0.866025 -0.013889 -0.000000 -0.013889

2 0.866025 0.000000 0.000000 0.000000

https://github.com/changning/sqs2poscar

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 10/12

2 0.866025 0.027778 0.000000 0.027778

2 0.866025 0.000000 -0.000000 0.000000

2 0.866025 0.000000 0.000000 0.000000

2 1.000000 -0.009259 0.000000 -0.009259

2 1.000000 -0.000000 -0.000000 -0.000000

2 1.000000 -0.018519 0.000000 -0.018519

2 1.000000 -0.027778 0.000000 -0.027778

2 1.000000 0.037037 -0.000000 0.037037

2 1.000000 0.000000 0.000000 0.000000

Objective_function= -0.703988

The bestcorr.out file contains the correlation functions of the target alloy and the
corresponding bestsqs.out . Shown above is an example. There are five columns followed
by the last line of Objective_function. The first column indicates whether this row is for pairs,
triplets, etc. In the example, only pairs are considered. The second column is the distance of
the neighbors that are included in the calculation. As a tip, you can confirm whether the code
included all the shells as you expect. The example file shows up to the second neighbor,
indicating two nearest neighbor shells are included in the calculation. These distance values
also agree with defined lattice parameters (unit 1). The third column shows the correlation
function results of the correponding pairs in the SQS, while the fourth the target alloy as
defined in rndstr.in . The last column is the difference between column 3 and 4. The ideal
SQS is reached if all numbers in column 5 are zero.

The last line of bestcorr.out gives the objective function of this SQS. The ATAT manual
gives a detailed explanation of its expression. In general, this parameter discribes how good
the SQS is in a universal scale. The more negative it is, the better the SQS, unless all
correlation functions match with the target alloy, in which case the objective function says
Perfect_match.

The mcsqs.log file

The mcsqs.log file doesn’t contain any new information. It saves the objective function and
all the number in column 5 of bestcorr.out for every SQS the code finds. It is a good place
to overview the calculation, as all the essential results are in this file.

How to tell if a SQS is good?
Even though the bestcorr.out file gives exact evaluation of how good the SQS is, telling
whether the SQS is really good enough for the study is a more complicated problem. We can
tell that a SQS with an objective function of -0.95 is better than one with that of -0.85. But it
is possible the former takes 3 weeks to generate, while the latter takes only 5 days, and both
turn out to be good enough. It would be great if there is a clear line, after which all SQS is
good enough. But this line is dependent on the specific material and the properties of
interest in each study. So, instead of giving an exact value as a fake good objective function,
let’s talk about how to confirm it is a good SQS.

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 11/12

Elements have been assigned in rndstr.in when generating a SQS, but they can be
exchanged if any two elements are equivalent, that is, always having the same concentration
on the same site. For example, any two elements can be exchanged in any equiatomic fcc
SQS, because all elements are equivalent. The L1-2 SQS has three equivalent elements on
the B-sites (Ni, Co, Fe in the previous rndstr.in). By exchanging equivalent elements in a
SQS can we obtain more than one permutations of the same SQS.

A good SQS is expected to exhibit close performance among all of its permutations. The
essential property is of course its total free energy. Ideally, the total free energies of all
permutations of the same SQS are equal. But this almost never happens, because it’s
almost never possible to obtain a SQS that has perfect correlation functions of pairs, triplets,
…, with large enough cutoffs. The energy as a function of permutation fluctuates. The
fluctuation can be small or large, depending on the material, the cell size and its correlation
functions (the influence of the material is most significant). It is not necessary to persue a
small fluctuation with much more time-consuming SQS generation, as long as the energy
scattering does not impact your conclusions.

An example is Fig. 2 in one of my papers (C. Niu, et al., Spin-driven ordering of Cr in the
equiatomic high entropy alloy NiFeCrCo, Appl. Phys. Lett. 106 (2015) 161906.
doi:10.1063/1.4918996):

The error bars in the right figure on all SQS columns are based on all possible permutations
of the same SQS. As long as these error bars don’t have an influence on the energy
comparison, it is OK to have them.

http://aip.scitation.org/doi/10.1063/1.4918996

2019/9/11 How to use SQS for disordered materials

cniu.me/2017/08/05/SQS.html 12/12

Besides total free energy, we can also use other properties to justify whether a SQS is good
enough. Above is Fig. 1 in the same paper. The two subplots are from two different SQS –
on the left is a small SQS with 24 atoms, and on the right is a large SQS with 120 atoms.
Both SQS are for the same fcc random alloy, with similar correlation function settings. In
each subplot, the magnetic moments of all atoms in all permutations are collected and
plotted as a function of local neighboring magnetic environment. The right subplot has 4X
more atoms, thus higher density of points. What I want to show here is that the two subplots
show similar trends, which proves the accuracy of the smaller SQS. I also want to point that
that this doesn’t mean a small SQS always works, but rather means it’s OK to use small
SQS as long as it is proved to have good accuracy for the properties of interest.

How to accelerate the generation of SQS?
The mcsqs code does not support MPI, but runs on single CPUs. However, it supports -
ip=xx to manually provide a random seed. We can submit several mcsqs instances to run
independently with different random seeds. This will make it faster to find desired SQS. After
all is done, select the one with the best correlation function results. Another solution is to use
the -rc flag with different cell shapes for each mcsqs instance.

A mcsqs job cannot be restarted. And there is no point to restart. This is because the
generation is a Monte Carlo algorithm to randomly search for structures. For example, let’s
assume a running mcsqs instance at objective function = -0.8, and we want to find a SQS
with an objective function = -0.9. We can continue this running job, or start with a new one.
In both cases, the probability of finding the desired SQS is the same.

Hosted on Github. Powered by Jekyll.

